H2A Scenarios for Delivering Hydrogen from a Central Production Plant to Light Duty Vehicles

Joan Ogden (University of California, Davis): scenarios
Marianne Mintz (Argonne National Laboratory): scenarios
Matt Ringer (National Renewable Energy Laboratory):
components and methods

NHA Conference 4/28/04

Renaissance Hollywood Hotel, Los Angeles CA

H2A Delivery Group Goals

- Develop spreadsheet database on delivery system component costs and performance
- Develop delivery scenarios for set of well defined "base cases" that span major markets and demand levels
- Estimate the cost of H₂ delivery for base cases

Assume 2005 delivery technologies

Delivery Component Workbook

- Allow user to access authoritative information on H₂ delivery component costs and performance in EXCEL workbook format
- "Beta" test version will be released this summer

Delivery Component Spreadsheets

- Each component of H₂ delivery system has separate descriptive EXCEL spreadsheet
- Each component spreadsheet includes
 - > installed capital cost as a function of size,
 - > performance (efficiency),
 - > O&M costs (fuel, electricity, labor, parts, etc.),
 - > equipment lifetime (and economic lifetime, if different);
 - > for 2005 technology
- ◆ Spreadsheets also include "generic" or "sample" calculations of how much the component contributes to H₂ delivery costs (\$/kg), for parameter ranges of interest

List of Delivery Components

IN DEVELOPMENT

- Compressed Hydrogen Gas Truck (Tube trailer)
- Liquid Hydrogen Truck
- H2 Compression (single-stage)
- H2 Compression (multi-stage)
- Hydrogen pipeline
- Liquefiers
- LH2 Storage Dewars
- Gaseous H2 Storage Cylinders

PLANNED

- Compressed Hydrogen Gas Truck Terminal
- Liquid Hydrogen Truck Terminal
- Gaseous H2 Underground Geological Storage

"Base Case" H₂ Delivery Scenarios

Market Type	Early Fleet Market (1%)	General Light Duty Vehicles: Market Penetration				
		Small (10%)	Medium (30%)	Large (70%)		
Metro	X	Х	X	X		
Rural			X			
Interstate			X			

3 Delivery Modes:

Compressed Gas Truck, Liquid H2 Truck; Gas Pipeline (pure modes; combined modes for each)

Delivery Scenario Workbooks one workbook per delivery base case (linked to Delivery Components Workbook)

- Define configuration for each base case and each delivery mode
- Calculate delivered hydrogen cost (\$/kg) for each base case and each delivery mode

Define Metro Base Case Configurations

- 2 city sizes (100,000, 1 million)
 - > Ave. population density 700-1200 people/km²
 - > Ave. light duty vehicles/person = 0.5-1.2
- Central H₂ plant sizes 50,000 500,000 kg/d
 - > 100 km from city, if city H₂ demand << 50 tpd,
 - > at city-gate, if city H₂ demand > 50 tpd
 - H₂ storage terminal (assure fuel deliverability):
 6 days LH₂ or 2 days gaseous H₂
- 2 Refueling station sizes 100 kg/d, 1500 kg/d
 - sited using idealized model of H₂ demand density
- Mass LDV markets: 0.72 kg H2/veh/day (14,950 miles/yr, fuel econ. 57.5 mpg equivalent)
- Early fleet vehicles: 0.96 kg H2/veh/day
 (20,000 miles/yr, fuel econ. 57.5 mpg equivalent)

Population Density => Household Vehicle Density => H₂ Demand

- Population density consistently peaks in 10-20% of urbanized area
- Shape of density function (rate of decline) reflects compactness vs. sprawl
- HH vehicle density rises from <0.5/capita in core to 1.16/capita in outer zones

Generic Large City with 4 Population Density Zones Requires 2 Interconnected Mains (+ Service Lines)

- Diameter of inner and outer mains = function of flow (kg/d) & delivery pressure at forecourt
- Circuity factors correct for noncircular layout
- Pressures:800 psi at main inlet200 psi at forecourt

Generic Geometry Compares Well with Observed NG Pipe Geometry for Similar-Sized Urbanized Area

Generic Small City Requires a Single Distribution Main + Service Lines

Summary: Metro Delivery Scenarios

	Small City			Large City				
	Fleet 1%	10%	30%	70%	Fleet 1%	10%	30%	70%
Cit y H2 Demand t onne/ d	1	8.3	25	58	9	83	250	580
Ave H2 dispensed / sta kg/d	70	1050	1050	1050	70	1050	1050	1050
# H2 Sta.	16	8	24	56	122	61	183	426
H2 plant ->city km	100	100	100	0	100	0	0	0
Ave. # km betwee n H2 sta	3.1	4.4	2.5	1.7	3.2	4.5	2.6	1.7
Comp gas trucks/ trailers	2/20	-	-	-	13/ 150	-	-	-
LH2 Trucks	2	2	5	7	11	7	21	48
Pipeline length km		40	68	121		293	525	980

Interstate Delivery: Rural Interstate DVMT/Mile & mpge=>H2 Demand

- Today, 10% of light-duty VMT occurs on 33,060 miles of rural interstate highways (FHWA, 2002)
- ~17,000 VMT/d/mi
- At 57.5 mpge, ~400 gge/mi/d needed for peak demand (July weekend day)

Interstate Delivery Scenarios: 160 km segment of rural interstate

	Market penetration: H2 LDVs					
	10%	30%	70%			
H2	3.9	11.6	27.0			
Demand						
tonne/ d						
# H2 Sta.	4	12	26			
1500 kg/d						
Ave. # km	40	13	6			
betwee n						
H2 sta						
LH2	1	3	5			
Trucks						

At 100% market penetration of H2 LDVs, ave. spacing for 1500 kg/d H2 stations ~ today's gasoline stations

Next Steps

- Complete Delivery Component Spreadsheets by End of Summer
- Refine delivery scenarios
 - > Review with industry
 - > Additional scenarios
 - System design production -> delivery -> forecourt
- Compare scenario results
 - > \$/kg vs demand
 - Sensitivity studies
- Complete Delivery Scenario Workbooks by October